3D Printers and Their Applications

I’ve had my 3D printer for almost a year and a half now and so I thought it was about time I write a post explaining why I think it’s the most useful tool in my office.  The setup I’m using is as follows:

Setup.jpg

Before I start explaining why I think 3D printing is the bee’s knees I just want to state that this post isn’t intended to be a review of the Printrbot.  This is the first 3D printer I’ve ever owned, so I don’t have any frame of reference to compare it to.  Rather this is an explanation of the uses I’ve found for 3D printing.  One of the biggest barriers I’ve seen to a 3D printer in every home is that most people can’t think of enough applications to justify the cost.  While I can’t definitively state that the money I’ve saved from 3D printing things has balanced out with the cost of the printer, I can at least bring my use cases to the table.

When working on projects I find that the greatest disincentive often comes from the act of physically doing something, be it measuring, drilling, cutting, etc.  While it wouldn’t necessarily be difficult to make custom parts out of wood and poster board, I find the time and effort it takes to plan and assemble the part deters me from even starting.  It also doesn’t help that I have trouble planning ahead and so will often encounter unforeseen problems mid-construction.  3D printers help mitigate this problem for me.

NavUnit

With how ridiculously easy OpenSCAD makes 3D modeling, I can quickly design a project and print it out without ever lifting a drill.  This makes 3D printing both easier and safer for the small things.  3D modeling has also reduced the number of unforeseen errors in my projects.  With the the configurable design right on my screen I no longer have to open my graph paper notebook to get a accurate view of my project.  I can move, change, and combine 3D parts with ease.

Granted, programmatic CAD does have drawbacks since it converts text to 3D images rather than directly manipulating the design.  However I believe that the benefits when it comes to reuse, version control, and parameterization outweigh these downsides.

Another benefit of having objects as a shareable software construct is that it allows you to take from and tweak the designs of others.  Thingiverse, one of the most popular sites for sharing 3D printed designs, even allows you to copy and “remix” other users’ objects for your own purposes.  One useful example I can think of is the idea for an Iron Throne style phone charger that I’ve been mulling over.  I don’t have the patience or CAD skill to design an Iron Throne 3D model from scratch, but there are other people who do.  I can then take their 3D models, with appropriate attribution, and use them as a baseline to design my phone charger.

iss_428x321
International Space Station

As 3D printing and scanning gains in popularity more large organizations will begin sharing important objects with the public.  Both NASA and the Smithsonian are beginning to openly share object models of important artifacts like space probes and fossils.  I truly hope there comes a day when I can have my own miniature 3D printed T-Rex skeleton to decorate my desk.

IMG_20151215_065554141
Command Strip adapter for a magnetic tool holder

Another considerable use I’ve found for the printer is to aid in apartment living.  Since I rent I’m limited in how many nails I can put in the wall before I lose my security deposit.

IMG_20151215_065607226
Command Strip adapter for wire spools

With a combination of Command Strips and custom printed adapters, I can create a way to hang heavy objects on the walls without doing any damage.

Lastly, and probably the most important use I’ve found for 3D printing in the home is for creating one-off objects that don’t have enough utility to be sold as a mass-produced product.

2015-10-24 14.02.40.jpg

The cake topper for my wedding is one such example of this.  Rather than settling for an expensive custom one on Etsy or a generic one from elsewhere, I designed and printed my own.  With the wide variety of filament that’s now available, finding a food-safe, metallic gold PLA wasn’t difficult.

I’m sure as time goes on I’ll continue to find more uses for my 3D printer around the house, but I already believe it’s paid for itself in terms of the productivity it’s afforded me with my hobbies.  There are things I can create now that I never would be able to without it and I feel that’s plenty of justification for my purchase.

Advertisements

Working with All the Pixels!

For the past two years, the computer setup in my home office has consisted of a Dell Precision T3500 with an old graphics card and two mismatched Dell monitors with roughly 720p resolution.  While this was plenty capable for running 3D printer software using pre-made files found on Thingiverse, I found the setup lacking when I started designing my own prints in OpenSCAD.  When it came to gaming, I couldn’t even run the original Portal, which came out in 2007.  My other option, my ThinkPad X220, seemed cramped in comparison to my dual 1080p monitor setup at work, and so a few months ago I started looking into upgrading my setup.

In an attempt to futureproof (and because I enjoy being on the bleeding edge), I decided to look at 4K monitors, given that the larger screen resolution would allow me to multitask or be able to keep open reference material (e.g. OpenSCAD cheatsheet) while working in an application.  I originally checked out a dual 4K 24″-27″ monitor setup as suggested in this blog post, but I quickly decided that I would need a larger screen in order to make full use of 4K.  After combining the calculations from isthisretina.com and OSHA’s recommended screen distance, I settled on getting a medium sized TV and using it as a monitor.

After much deliberation and browsing, I purchased a 39″ Seiki UHD TV when it was on sale for $280 and a GeForce GTX 960 to drive all of those pixels. The GTX 960 is a pretty capable graphics card and would be able to provide a decent gaming experience and even drive an additional 4K display if I ever decide to buy another one.  After working with this new setup for several weeks, I found a few pros and cons as outlined below:

Pros:

Activities

  • So many lines of code!  Eclipse was barely usable on my previous monitors.  I had to work with all of the Views closed to get a usable amount of space for editing code.  With my new one I can put Eclipse at half-screen, open a ton of Views, and still see over 100 lines of code.

OpenSCAD

  • Multitasking!  I love never having to switch windows.  This monitor makes it so I almost never have to do that.
  • It’s big enough to fully take advantage of the 4K  with a “Retina” distance at 30″.  I sit a little over two feet away from my monitor, so I can barely distinguish between individual pixels if I’m looking closely.
  • It’s the equivalent of four 1080p displays but cheaper than two 1080p displays.  I did have to upgrade my graphics card to account for the higher resolution, but even with that it was worth it.

Eagle

Cons:

  • There’s a slight backlight dimming on the edge of the screen due to the large contrast between viewing angles.  This isn’t too much of a problem and is easily solved by moving my head or rolling my chair side to side.
  • There’s no inactive monitor mode so I have to manually turn off the display.  Again, not a big problem, just another thing to remember.
  • My wife can steal the remote and turn off the TV when I ignore her for too long.

While I haven’t been working with the new setup long enough to tell for sure, I’m overall happy with my decision and would highly recommend it!

Home Maker Server

Being a generally disorganized person who works as a professional engineer, I’ve noticed that the tools I use at work have really helped me stay organized and focused.  After noticing this, I’ve decided to utilize some similar tools for my personal projects to keep me organized and motivated, and also to apply a professional touch to my hobbies.  The most useful tools I’ve used at work are part databases, a version control system, and an issue tracker.  Since the specific tools I use at work are targeted towards large companies and therefore have expensive licenses, I’ll be using open source or free alternatives.  In addition to the tools I mentioned, I’m also going to install a 3D printing server so my Printrbot is no longer tethered to my main PC and prints can be uploaded and controlled from anywhere.  I’ve bought a Raspberry Pi 2 Model B specifically to handle this software and become my official home maker server.  The software that I’ll be installing as well as links to installation instructions are as follows:

PartKeepr

PartKeepr – A part database.  I’m constantly losing, buying multiples, and rediscovering parts so this will help give me a clear snapshot of all of my components, allowing me to better plan out projects and determine part requirements.  I used this blog post for installation instructions, but here are a few quirks I noticed when installing:

  • I had to copy the partkeepr folder to /var/www/html rather than /var/www since that was the default root directory for my apache server
  • I had to be logged in as the super user (sudo su) for the pear part of the installation or it wouldn’t work

GitHub

Github – I don’t anticipate developing closed source code in the foreseeable future so I’ll just be using Github for version control.

Trello

Trello – A simple issue tracker with a convenient web interface.  There’s not a lot of advanced functionality but it should be sufficient for what I want to do.  Originally I was going to use a more sophisticated issue tracker called Trac because it has integration with version control and a built-in wiki, but decided against it.  It would be another service to install and host on my Raspberry Pi and the additional complexity might deter my productivity.  In addition, not having a private wiki could serve as encouragement to keep my projects better documented on this blog.

Octoprint

Octoprint – A 3D printing management server.  It provides network access and a web GUI for uploading prints and viewing printer status.  The installation instructions I used are from their GitHub page.

Desk Fume Extractor

In my ongoing, multi-year effort to clean my office and upgrade it to the ultimate make-station, I decided that I needed a fume extractor since inhaling solder fumes probably isn’t too good for my health.  Of course, being me, I decided a basic fume extractor was too simple and set about building one into the cheap Ikea tables I use as desks.

Right off the bat I knew I needed at least four components: a fan to move the air, a filter to absorb smoke and particulates, a porous tabletop, and a power switch to turn the system on and off.  For the fans I bought a few cheap pc fans.  They’re about 5 inches in diameter, run off 12V, and move a decent amount of air quietly.  The filters are just a few solder fume extractor filter replacements.  The porous tabletop surface was a bit harder to find.  I wanted something with large enough holes to let plenty of air through, but small enough that I wouldn’t constantly be losing pieces into them.  I settled on a one foot by two foot piece of sheet metal with 3/16 inch holes.  The on/off switch was just something I picked up from Radioshack.

For the placement of the fume extractor, the two desks, when placed next to each other on the long axis, take up almost the entire width of the office with nine inches to spare.  I decided to place the fume extractor into that space to save myself the trouble of cutting into the desk.

2015-09-13 14.23.22

The first step in the process of building the fume extractor was to create the structure to hold the fans and filters.  Originally I was going to 3D print elaborate fan and filter holds but decided that cutting into some foam core board I had laying around would be much easier.  Since I had no idea about what kind of airflow is necessary to draw in solder smoke I decided to try and fit as many fans as I could into the fume hood and cut out holes for four of the PC fans I bought.2015-09-13 14.23.33

Once that I was done, I designed and printed out some simple brackets to hold the carbon filters.

2015-09-13 14.58.12

I hot glued them all together to make mounting easier.

2015-09-13 15.09.41

And taped them onto the foam core board.  (Huzzah for Duct Tape!)

2015-09-13 15.22.33

The filters fit in snugly and are easy to pop out and replace.

2015-09-13 21.07.57

Next was mounting the fans.2015-09-13 21.59.26

The fans had holes in the corners so mounting them was a simply a matter of poking holes in the foam core board and mounting them with M3 screws and nuts.

2015-09-13 22.25.20

The fans came with PC fan electrical connectors so I had to cut that off, strip the wires, and solder them together in parallel.
2015-09-13 20.38.50

I printed out 1″ brackets to mount onto the desks.  The foam core board assembly will lay on top of these.2015-09-13 22.25.54

I taped these brackets onto the desk as a proof of concept and because I like to avoid drilling/cutting/sawing if at all possible.  If I’m feeling ambitious at some point in the future, I will probably screw these in to make the assembly more permanent.2015-09-13 22.24.40

After some fidgeting with the placement of the desks, the foam core assembly sits in the gap pretty nicely.  My original intention was to attach the assembly directly onto both of the desks via the brackets, but decided against it for two reasons.  First, with the board sitting gently on top of the brackets, it’s much easier to pull it out.  This will make pulling the assembly out and replacing the filters much easier.  Second, the 3D printer can produce a lot of vibration and usually shakes the entire table.  If the foam core assembly was rigidly attached to both desks the vibrations would shake both tables and the computer monitors on the left desk would vibrate whenever the 3D printer was in use.  With the foam core laying in the gap it will probably get a little more beat up being hit by right desk, but foam core is cheap and it would be easy to replace.

fumehood

This is the basic wiring diagram for the electrical side of things

2015-09-19 08.50.07

For the power I just wired up an old Power Wheels charger I had lying around.  Originally I intended to add another switch and some 10W resistors to be able to select two speeds for the fume hood.  I thought that the four fans would be excessively loud and I’d want to run the fume extractor at half speed most of the time.  Fortunately, running the four fans together turned out to be surprisingly quiet, so I simplified and decided to only wire up an On/Off switch.

2015-09-17 21.11.23

2015-09-17 21.11.15

I mounted the button on the front of the foam core assembly in a 3D printed panel.  Cutting precision circles in foam core board turned out to be pretty difficult, so using a 3D printed front was simpler.

2015-08-27 18.57.57

I was a little unhappy with the metal surface I purchased.  The surface was pretty scratched and stained.  It also had a curvature to it from being rolled up, something which I didn’t anticipate.  I laid it flat and put my two heaviest books on top to flatten it out.

2015-09-19 14.02.18

However, after several days of flattening there was still a slight curvature to the metal so I had to screw it into the desk to keep it flat.

2015-09-19 14.06.18

The edges of the metal surface were also pretty sharp so after fastening the metal into position I taped down the edges with the black Duct Tape i used earlier.  This provided both a nice finish and a way to not cut myself.

2015-09-19 14.06.31

Overall I’m happy with how this turned out.  It looks pretty nice, and while it could do with some polish it’s simple and sturdy.  And best of all it works!