ICRS: Details and Goals

Description

Infrastructure and construction robots are a group of modular robotic agents that can work cooperatively to automate various tasks such as construction, inspection, and repair. Each robot is capable of multiple functions, as capacities can be modified through the installation of different attachments on the unit. Each base unit is designed to be low cost to minimize the time and monetary investment and protect against significant losses due to the failure of a single robot. A group of robots can be teleoperated to increase the efficiency of skilled operators or can be given basic directives to automate simple or repetitive tasks.

Problem A: Infrastructure

  • U.S. infrastructure is currently rated as subpar and is continuously degrading (Graded D+ by ASCE)
  • Part of the issue lies in the extreme costs of repairs necessary across the nation (estimated $4.59 billion by 2025 to fix)
  • This massive increase in spending would cause a drag on the economy ($3.9 trillion GDP loss by 2025)
  • Too many problems, too expensive, takes too long

Problem B: Disaster Relief Management

  • Disasters are difficult to recover from and each disaster has unique requirements and problems that need to be addressed
  • Disasters are inherently unpredictable and so disaster preparation would require addressing all possible problems before it occurs, a prospect that can be prohibitively expensive
  • It’s also expensive to be reactionary and ship required relief materials for every disaster only after the disaster has occurred
  • Loss of life is worse immediately following the disaster before the relief supplies can make it to their destination
  • Massive, repeated shipments can be problematic due to bureaucratic and logistical delays

Problem C: Construction and Landscaping

  • Building homes and structures is expensive and time consuming
  • Machines for construction are expensive and have high specialization sometimes requiring many different machines for a single project
  • Cheaper, mass produced materials result in low levels of customization and customer satisfaction also requiring expensive shipment to the destination
  • Heavy earth moving machinery is often needed for landscaping projects which can be expensive or difficult to acquire
  • Using heavy machinery can be difficult and requires additional skills; alternatively hiring professionals only makes the work more expensive

Problem D: Non-Terrestrial Construction

  • Sending up satellites is limiting in both space and weight
  • After the heavy costs associated with initial construction, there are currently no options for repairs in the case of damage
  • Space junk is a problem without a good method of deorbiting debris
  • Expensive and restrictive to need to send all materials to construct a habitat on another planet
  • Materials to build habitats exist on planets but no machines currently capable of utilizing them or constructing habitats

Solution

  • Teleoperated robots!
  • Remote operated requiring skilled workers or semi-autonomous task completion
  • Perform checking and eventually construction that’s more cost effective
  • Makes workers more efficient and amplifies their capabilities
  • Increase in safety with cheap, expendable robots performing dangerous work
  • Flexible function using modular attachments means each robot is capable of many different actions
  • Small size means robots can work concurrently in the same location, reducing multiple phases of a project into a single, incremental step
  • Swarm methodology for a group of robots means tasks can be accomplished much quicker
  • A combination of a large swarm and the modularity means specific tasks can be dynamically allocated due to shifting requirements

Goals

Tier 1

  1. Robot with modular attachments that enable it to serve various functions
  2. Cheap base model that can be produced in quantity and has basic motion, communication, and sensor capabilities
  3. Assignable roles so that broken robots can easily be replaced by spare units or units can be re-assigned based on need
  4. Teleoperation with visual data so that users can get direct feedback about the status of the project’s target
  5. Limited physical intervention required by users
  6. Ability to direct movement and basics tasks to be performed by the robots

Tier 2

  1. Modular attachments can be swapped autonomously
  2. Dynamic role allocation so that the robots automatically determine the best distribution to get a task done efficiently
  3. Coordinated motion so the robots can be given simple direction to accomplish group behavior

Tier 3

  1. Machine learning can automatically flag problematic inspection data
  2. Augmented reality data so that the users can see the project target and the current progress side by side
  3. Advanced autonomy with the robots having the capabilities to perform a great deal of tasks with little user control required

Specifications

Sensors

  • Camera for teleoperation and visual data collection
  • GPS
  • IMU
  • Attachment identification

Communication

  • Central communication node to route mesh network packets
  • Master node compiles debug information and swarm state
  • Master establishes swarm requirements and passes them on to individual agents
  • Handled over WiFi with the master node providing the central access point

User Interface

  • Communication through a web interface hosted on the central node
  • Accessible by connecting to the swarm network
  • High level control abilities to direct general motion of the group and assign tasks
  • Lower level control also available for finer motion control
  • Individual robots are selectable so that debug information, robot state, and individual command interfaces are available

Job Allocation

  • Jobs are dynamically allocated and passed on to the individual robots via communication with the master node
  • Robots automatically connect to the attachments required to perform their assigned tasks

Potential Attachments

  • Gripper: Movement of structural material
  • Dumper: Transportation and removal of debris, earth, sand, etc.
  • Arm: Fine manipulation of objects
  • Screwdriver
  • Drill

Milestones

1. First Functional Prototype

  • Single robotic unit
  • Direct control basic interface (command line, GPS coordinates, etc.)
  • Basic motion and movement commands with low accuracy

2. Attachment Prototypes

  • Several basic, modular attachments for the prototype robot so it can perform various functions (e.g. gripper, arm, digger, screwdriver, drill, material transportation)
  • Automatic identification and control of the different attachments

3. Prototype Swarm

  • Multiple units controllable via a single interface
  • Different attachments to show multi-use cooperation
  • Direct control basic interface for individual units as well as group movements
  • Central communication hub to route communication between robots and provide single access point that distributes commands to individual swarm members

4. Survey and Analysis Demo

  • Demonstration of basic survey capabilities using direct control interface and teleoperated swarm
  • Robots coordinate with each other to map out a structure and provide detailed pictures
  • Optional additional sensors for measuring other useful data (e.g. radiation, temperature, vibration)

5. Repair Demo

  • Demonstration of basic repair capabilities using direct control interface and teleoperated swarm
  • Robots are capable of moving repair materials into place and performing the repairs without physical operator intervention
  • Robots can cooperate as a cohesive group to transfer repair materials and/or remove broken material

6. Construction Demo

  • Demonstration of basic construction capabilities using direct control interface and teleoperated swarm
  • Robots are capable of assembling an entirely new structure without physical operator intervention
  • Robots are capable of working together to prepare construction area and build a structure

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s